Перевод: с русского на английский

с английского на русский

точка накопления

  • 1 точка накопления

    1) <math.> accumulation point

    2) limit point

    Русско-английский технический словарь > точка накопления

  • 2 точка накопления

    Универсальный русско-английский словарь > точка накопления

  • 3 точка накопления

    accumulation point матем., limit point

    Русско-английский научно-технический словарь Масловского > точка накопления

  • 4 точка

    1) < radio> dih

    2) dot
    3) period
    4) place
    5) <topogr.> point
    6) speck
    7) <naut.> spot
    базисная точка
    внеосевая точка
    высшая точка
    главная точка
    диакритическая точка
    достижимая точка
    единичная точка
    зеркальная точка
    идентичная точка
    изображающая точка
    изолированная точка
    исходная точка
    кардинальная точка
    конечная точка
    контрольная точка
    концевая точка
    кратная точка
    материальная точка
    мертвая точка
    мировая точка
    наивысшая точка
    начальная точка
    нейтральная точка
    неособая точка
    неподвижная точка
    несобственная точка
    неустойчивая точка
    ниверлирная точка
    нулевая точка
    общая точка
    опорная точка
    особая точка
    отдельная точка
    пограничная точка
    пробная точка
    разрезающая точка
    растворая точка
    ребристая точка
    реперная точка
    сварная точка
    светящаяся точка
    седловая точка
    седлообразная точка
    средняя точка
    счислимая точка
    такнодальная точка
    термостабильная точка
    точка возврата
    точка равновесия
    точка визирования
    точка возврата
    точка возгорания
    точка воспламенения
    точка востока
    точка вращения
    точка встречи
    точка граничная
    точка двойная
    точка двузначности
    точка деления
    точка дирамации
    точка замера
    точка замерзания
    точка заострения
    точка застоя
    точка затвердевания
    точка зенита
    точка зрения
    точка излома
    точка излучения
    точка испарения
    точка касания
    точка кипения
    точка конвергенции
    точка контакта
    точка Кюри
    точка наблюдения
    точка надира
    точка накопления
    точка неопределенности
    точка округления
    точка опоры
    точка осаждения
    точка отнесения
    точка отрыва
    точка перегиба
    точка пересечения
    точка перехода
    точка плавающая
    точка плавления
    точка покоя
    точка превращения
    точка предельная
    точка привязки
    точка прикосновения
    точка притяжения
    точка рабочая
    точка разветвления
    точка размягчения
    точка росы
    точка самокасания
    точка самопересечения
    точка самоприкосновения
    точка сгущения
    точка севера
    точка смазки
    точка соединения
    точка спинодали
    точка стеклования
    точка схода
    точка узловая
    точка шарнира
    точка экстремума
    тройная точка
    угловая точка
    узловая точка
    установочная точка
    шаровая точка
    эквивалентная точка

    бесконечно удаленная точка — infinite point, infinity, point at infinity


    бипланарная двойная точкаbinode


    верхняя мертвая точкаtop dead center


    взаимно обратная точкаinverse point


    высотная опорная точкаvertical control point


    высшая точка сводаroof crown


    диаметрально противоположная точка — antipodal point, antipode


    искусственная нулевая точкаartificial grounding point


    контрольная точка на платеsense point


    крайняя или экстремальная точкаextreme point


    критическая точка расслаивания<phys.> phase separation point


    магнитная точка Кюриmagnetic transition temperature


    начальная точка кипенияinitial boiling point


    нижняя мертвая точкаbottom dead center


    плановая опорная точкаhorizontal control point


    потенциально заземленная точкаvirtual ground


    средняя точка на обмоткеcenter tap


    существенно особая точкаessential singularity


    точка затвердевания золотаgold point


    точка затвердевания серебраsilver point


    точка зимнего солнцестояния<astr.> winter solstice


    точка излома кривойbreakpoint


    точка касания Землиtouch-down point


    точка летнего солнцестоянияsummer solstice


    точка минимального подходаclosest point of approach


    точка минимума плотности распределенияantimode


    точка минимума токаvalley point


    точка опоры рычага<phys.> fulcrum


    точка отбора электропитанияconvenience outlet


    точка отрыва потокаseparation point


    точка перегиба кривойinflection point


    точка полного накопленияcomplete accumulation point


    точка половинной мощностиhalf-power point


    точка приложения нагрузкиload point


    точка приложения подъемной силыlift center


    точка приложения силыpoint of application


    точка разветвления алгебраическая<math.> algebraic branch-point


    точка разветвления схемыjunction point of network


    точка разрыва непрерывностиdiscontinuity point


    точка разрыва с конечным скачком<math.> jump discontinuity, ordinary discontinuity


    точка с нулевым потенциаломpoint at zero potential


    точка самокасания кривойflecnode


    точка сосредоточения массыdiscrete mass point


    точка средняя выведеннаяcentertap


    точка срыва потокаburble point


    тройная точка водыtriple point or water


    угловая точка кривойsalient point of a curve


    четвертая гармоническая точкаfourth harmonic point

    Русско-английский технический словарь > точка

  • 5 точка полного накопления

    Русско-английский научно-технический словарь Масловского > точка полного накопления

  • 6 cluster point process

    = cluster process
    French\ \ processus ponctuel en grappes
    German\ \ Cluster(punkt)prozeß
    Dutch\ \ geclusterd puntproces
    Italian\ \ processo a grappolo
    Spanish\ \ proceso del racimo
    Catalan\ \ clúster (punt) procés de
    Portuguese\ \ processo (pontual) de conglomerados
    Romanian\ \ cluster (punct) procesul de
    Danish\ \ klynge (punkt) proces
    Norwegian\ \ klynge (punkt) prosess
    Swedish\ \ kluster (punkt) process
    Greek\ \ συμπλέγματος (σημείο) της διαδικασίας
    Finnish\ \ kasautumispisteprosessi
    Hungarian\ \ klaszter (pont) folyamat
    Turkish\ \ küme (nokta) süreci (prosesi)
    Estonian\ \ klasterprotsess
    Lithuanian\ \ lizdo taškų procesas
    Slovenian\ \ grozda (točka) proces
    Polish\ \ proces zespołowy (punktowy)
    Russian\ \ процесс нахождения предельного кластера точки; точка накопления
    Ukrainian\ \ точковий процес
    Serbian\ \ кластера (тачка) процеса
    Icelandic\ \ þyrping (liður) aðferð
    Euskara\ \ kluster (puntu) prozesu
    Farsi\ \ -
    Persian-Farsi\ \ خوشه (نقطه) فرایند
    Arabic\ \ عملية عنقودية
    Afrikaans\ \ trosvormige puntproses
    Chinese\ \ 聚 点 过 程
    Korean\ \ 군집(점)과정, 집락(점)과정

    Statistical terms > cluster point process

  • 7 синхронизация времени

    1. time synchronization
    2. clock synchronization

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > синхронизация времени

См. также в других словарях:

  • точка накопления — предельная точка Словарь русских синонимов …   Словарь синонимов

  • точка накопления — Syn: предельная точка …   Тезаурус русской деловой лексики

  • Точка накопления — …   Википедия

  • НАКОПЛЕНИЯ ТОЧКА — множества А точка хто пологич. пространства Xтакая, что в любой ее окрестности есть отличная от хточка множества А. У множества Ав пространстве может быть много Н. т., но может не быть ни одной. Напр., любое действительное число является Н. т.… …   Математическая энциклопедия

  • Сгущения точка —         некоторого множества (математическая), такая точка, в любой окрестности которой содержится бесконечное число точек этого множества. В настоящее время вместо термина «С. т.» или ранее употреблявшегося термина «точка накопления» принято… …   Большая советская энциклопедия

  • предельная точка — точка накопления Словарь русских синонимов …   Словарь синонимов

  • предельная точка — Syn: точка накопления …   Тезаурус русской деловой лексики

  • ПОЛНОГО НАКОПЛЕНИЯ ТОЧКА — точка хмножества Мв топологич. пространстве Xтакая, что пересечение Мс любой окрестностью химеет мощность ту же, что и все множество М. М. И. Войцеховский …   Математическая энциклопедия

  • Точка полного накопления — …   Википедия

  • Точка поного накопления — …   Википедия

  • Словарь терминов общей топологии — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»